

Microbial diversity in a saline siliciclastic aquifer at the ATES exploration site Berlin-Adlershof

Julia Mitzscherling¹, Lioba Virchow², Martin Gitter³, Armando Alibrandi¹, Simona Regenspurg², Stefan Kranz² and Dirk Wagner^{1,4}

¹GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany; ²GFZ German Research Centre for Geosciences, Section Geoenergy, Potsdam, Germany; ³Technische Universität Berlin, Department of Applied Geochemistry, Berlin, Germany; ⁴University of Potsdam, Institute for Geosciences, Potsdam, Germany

Motivation

- Aquifer Thermal Energy Storages (ATES) can store excess energy (heat) and **provide** it when required
- microbial activity can impair the efficiency and integrity of ATES facilities in different ways
- rucial to identify microbial key players and monitor their activity

Objectives

 explore microbial community composition, behaviour and potential functions in a siliciclastic aquifer at the ATES exploration site over 2 years after drilling

Quarz Quarz

Take home

- Aquifer microbial community is characterized by syntrophic relationships between fermentative and acetogenic bacteria with sulfate reducing bacteria (SRB) and methanogens
- Community undergoes **succession over time** fermentation > sulfate reduction → methanogenesis
- Temperature increase selects for SRB, decrease for acetogens
- Potential key consequences on ATES:
 - H₂S formation → **corrosion** of metal components
 - Iron sulfide scales → pipe clogging
 - CH₄ formation → gas buildup/pressure changes/safety hazard
 - Biofilm formation -> permeability/effiency reduction

Study Site & Methodology

ATES exploration site* in Berlin-Adlershof (BTB GmbH, Berlin)

- **Water sampling**
- 2 months
- 14 months 24 months
- 28 months after drilling

Origin of groundwater at ~225 mbs

Enrichment for sulfate reducers (SRB): +/- NaCl, N_2 or H_2 at

Microbial community analysis based on amplicon sequencing of 16S rRNA gene

28 months

14 months

stress: 0.10

24 months 🛧 💊

16/28/55 °C

Hydrochemistry

Table 1: Groundwater characteristics. Saline water $(\sim 2\%)$ is dominated by Na and Cl. Sulfate can act as electron acceptor for anaerobic respiration by SRB. The presence of organic acids indicates fermentative microbial metabolism. *Standing water in the annulus of the production well as indicated by higher pH, lower temperature and different microbial community (see Fig. 1 & 2A).

			LC		Lilig										
	sample		[mS	Temp	L-1]							Lactic			
sampling	no.	рН	cm ⁻¹]	[° C]	Na	K	Mg	Ca	F	Cl	SO ₄	acid	Acetate	Propionate	Valerate
2 months	1	n.m.	31.9	15.9	6970	220	146	166	1	11688	270	n.a.	0.4	n.a.	n.a.
14 months	1*	9.5	26.4	11.8	6615	259	109	71	1	11163	270	<1	1.8	n.a.	<1
	2-5	7.7	31.9	13.6	6656	283	130	139	1	11060	250	3.6	4.0	0.6	0.9
24 months	1-3	7.6	31.4	14.1	5401	110	60	54	1	10457	235	0.3	< 0.1	< 0.1	n.a.
28 months	1-3	7.7	31.7	15.3	6843	152	151	190	n.a.	10770	225	<0.1	0.8	0.1	n.a.
	sampling 2 months 14 months 24 months	sampling no. 2 months 1 14 months 1* 2-5 24 months 1-3	2 months 1 n.m. 14 months 1* 9.5 2-5 7.7 24 months 1-3 7.6	sample sampling no. [mS] pH cm-1] pH cm-1] 2 months 1 n.m. 31.9 14 months 1* 9.5 26.4 2-5 7.7 31.9 24 months 1-3 7.6 31.4	sample sampling no. [mS Temp pH cm ⁻¹][° C] 2 months 1 14 months 1* 2-5 7.7 31.9 13.6 24 months 1-3	sample sampling no. [mS Temp pH cm ⁻¹][° C] L ⁻¹] Na 2 months 1 n.m. 31.9 15.9 6970 14 months 1* 9.5 26.4 11.8 6615 2-5 7.7 31.9 13.6 6656 24 months 1-3 7.6 31.4 14.1 5401	sample sampling no. [mS Temp pH cm ⁻¹][° C] L ⁻¹] Na K 2 months 1 n.m. 31.9 15.9 6970 220 14 months 1* 9.5 26.4 11.8 6615 259 2-5 7.7 31.9 13.6 6656 283 24 months 1-3 7.6 31.4 14.1 5401 110	sample sampling no. [mS Temp pH cm ⁻¹][° C] L ⁻¹] Na K Mg 2 months 1 n.m. 31.9 15.9 6970 220 146 14 months 1* 9.5 26.4 11.8 6615 259 109 2-5 7.7 31.9 13.6 6656 283 130 24 months 1-3 7.6 31.4 14.1 5401 110 60	sample sampling no. [mS Temp pH cm ⁻¹][° C] L ⁻¹] Na K Mg Ca 2 months 1 n.m. 31.9 15.9 6970 220 146 166 14 months 1* 9.5 26.4 11.8 6615 259 109 71 2-5 7.7 31.9 13.6 6656 283 130 139 24 months 1-3 7.6 31.4 14.1 5401 110 60 54	sample sampling no. [mS Temp pH cm ⁻¹][° C] L ⁻¹] Na K Mg Ca F 2 months 1 n.m. 31.9 15.9 6970 220 146 166 1 14 months 1* 9.5 26.4 11.8 6615 259 109 71 1 2-5 7.7 31.9 13.6 6656 283 130 139 1 24 months 1-3 7.6 31.4 14.1 5401 110 60 54 1	sample sampling no. [mS Temp pH cm ⁻¹][° C] L ⁻¹] Na K Mg Ca F Cl 2 months 1 n.m. 31.9 15.9 6970 220 146 166 1 11688 14 months 1* 9.5 26.4 11.8 6615 259 109 71 1 11163 2-5 7.7 31.9 13.6 6656 283 130 139 1 11060 24 months 1-3 7.6 31.4 14.1 5401 110 60 54 1 10457	sample sampling no. [mS Temp pH cm ⁻¹][° C] Na K Mg Ca F Cl SO ₄ 2 months 1 n.m. 31.9 15.9 6970 220 146 166 1 11688 270 14 months 1* 9.5 26.4 11.8 6615 259 109 71 1 11163 270 2-5 7.7 31.9 13.6 6656 283 130 139 1 11060 250 24 months 1-3 7.6 31.4 14.1 5401 110 60 54 1 10457 235	sample sampling no. [mS Temp pH cm ⁻¹][° C] L-1] Lactic solution 2 months 1 n.m. 31.9 15.9 6970 220 146 166 1 11688 270 n.a. 14 months 1* 9.5 26.4 11.8 6615 259 109 71 1 11163 270 <1	sample sampling no. [mS Temp pH cm⁻¹][° C] L⁻¹] Na K Mg Ca F Cl SO₄ acid Acetate Lactic acid Acetate 2 months 1 n.m. 31.9 15.9 6970 220 146 166 1 11688 270 n.a. 0.4 14 months 1* 9.5 26.4 11.8 6615 259 109 71 1 11163 270 <1 1.8 2-5 7.7 31.9 13.6 6656 283 130 139 1 11060 250 3.6 4.0 24 months 1-3 7.6 31.4 14.1 5401 110 60 54 1 10457 235 0.3 <0.1	sample sampling no. [mS Temp pH cm ⁻¹][° C] L ⁻¹] Lactic acid Acetate Propionate 2 months 1 n.m. 31.9 15.9 6970 220 146 166 1 11688 270 n.a. n.a. 0.4 n.a. 14 months 1* 9.5 26.4 11.8 6615 259 109 71 1 11163 270 <1 1.8 n.a. 2-5 7.7 31.9 13.6 6656 283 130 139 1 11060 250 3.6 4.0 0.6 24 months 1-3 7.6 31.4 14.1 5401 110 60 54 1 10457 235 0.3 <0.1 <0.1

Table 2: Dissolved gas composition – dominated by H₂ 2 months after drilling, but N₂ 14 months after drilling.

	[%] H ₂	N_2	CO ₂	Ar	02	He	CH ₄
2 months	91.6	7.0	1.3	n.a.	n.a.	n.a.	n.a.
14 months	0.1	95.8	0.5	2.6	0.7	0.0	0.2

Aquifer Microbial Community Composition and Dynamics

0.4 -14 months-annulus 0.3

-0.2

NDMS1

Fig. 2A: NMDS analysis microbial **community** shift after > 2 months and stabilization > 14 months. Relative abundance changes fermenters, SRB and methanogens over

https://www.gfz-potsdam.de/sektion/geoenergie/projekte/2019-2022-geofern

Enrichments

Fig. 3: Composition and relative abundance of taxa after enrichment for sulfate reducers at different temperatures and head spaces with and without NaCl.

- Abundance of SRB correlates with formation of black precipitates (most likely Fe-sulfide)
- Temperature controls the type of organisms being enriched
- No enrichment at 55 °C
- Salinity and head space composition have no significant impact