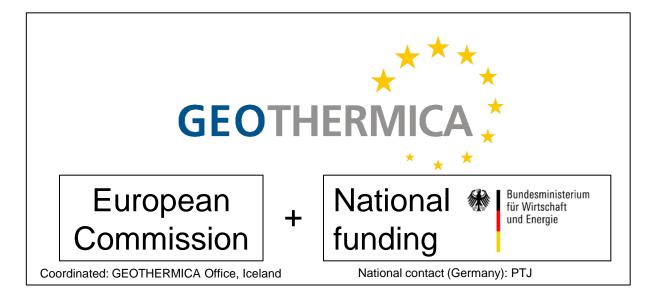
PERFORM

- Improving Geothermal System Performance through collective Knowledge Building and Technology

Development



Simona Regenspurg,

Jörg Zotzmann, Elvira Feldbusch, Florian Eichinger, Joy lanotta, Harald Milsch

GEOTHERMICA's objective: to combine the financial resources and know-how of the countries together with financial support from the European Commission

 \rightarrow launch joint projects that demonstrate and validate novel concepts of geothermal energy utilization

June 2018 to May 2021 TRL: 5-6 to 7-8

Joint Program Consortium PERFORM

Nationales Verbundprojekt

Bundesministerium für Wirtschaft und Energie

Goals and structure

Improve geothermal system performance, lower operational expenses and extend the life-time of infrastructure.

<u>WP 1:</u> To create a knowledge database, enabling efficient evaluations of the causes for poor flow and injectivity

<u>WP 2:</u> To develop integrated models providing forecasting for scaling, productivity and injectivity on short- and longtime scales

<u>WP 3:</u> To develop **innovative technologies** to prevent sitespecific scaling, clogging and enhance injectivity <u>WP 4:</u> To optimize production/ injection procedures at demonstration sites → proving a design and **operation toolbox** for the operators

HELMHOLTZ

WP 3 Technology Development

Scaling and particle clogging prevention, enhance injectivity

Task 3.1: Testing and evaluating particle filters

Task 3.2: Development, testing, evaluating selective cation removal filters

Task 3.3: H_2S corrosion prevention: Removal of H_2S by $FeCl_2$ addition

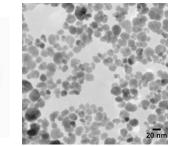
Task 3.4: Corrosion and the effect of corrosion resistant alloys

Task 3.5: CO₂-(re)injection and pH-control

Task 3.6: Injection temperature optimisation

Metal removal by adsorption (Ba, Fe, Pb,Cu)

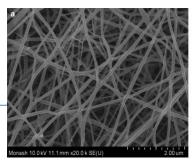
Goal: Develop adsorption filters for thermal waters \rightarrow stability and effectivity


Materials:

GFZ

chitin

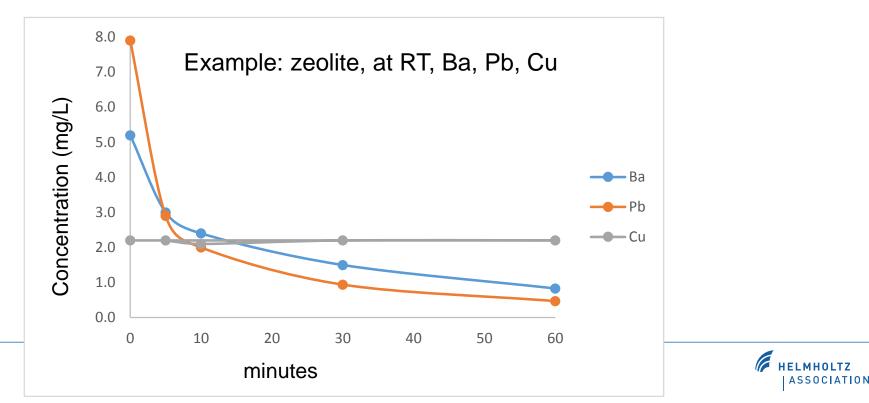
- Zeolite: clinoptilolite (Na,K,Ca)₂₋₃Al₃(Al,Si)₂Si₁₃O₃₆
- Iron oxide: e.g. magnetite (Fe₃O₄)

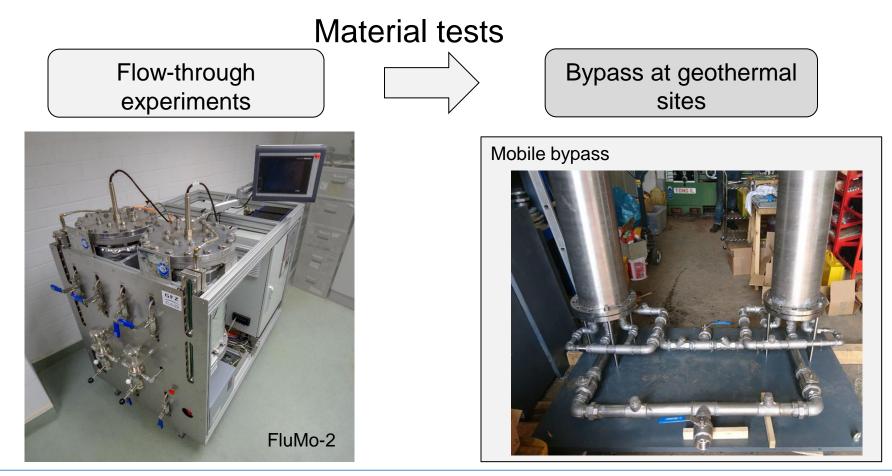


www.pratleyminerals.com

• Chitosan (polysaccharide)

Production: TU Dresden ITM


Electro spinning


First tests: static experiments

GFZ

Helmholtz Centre Potspam

Test for adsorption capacity, metal affinity, reaction speed, temperature stability, temperature effect, competition with other ions, reversibility \rightarrow batch experiments

Site & Country		reservoir	Type of operation
Pijnacker Nootdorp	NL	siliciclastic, Jurassic- Cretaceous	Metal extraction reactive transport simulation
Honselersdijk			Particle filter, injection temperature, CO_2 reinjection, reactive transport simulation
Groß Schönebeck	De	siliciclast., volcanic Permian	None (database)
Insheim		carbonate, Triassic	Reactive transport simulation, particle filters?
Oberlaa	Au	carbonate, Jurassic	H ₂ S removal
Thisted Varmeforsyning	Dm	siliciclastic, Triassic – Jurassic	none
Sønderborg Fjernvarme			Corrosion control
Margretheholm		siliciclastic, <	Metal extraction Particle filter, Corrosion control, reactive transport simulation

Bundesministerium für Wirtschaft und Energie

Tanya Golberg, Viola Pul-Verboom van, Lars Kristensen, Laura Wasch, Tanja Ballerstedt, Florian Jasper Zimmermann, Kristensen Lars, Hanne Dahl Holmslykke, Larsen Uffe. Troels Mathiesen, Leon Ammerlaan, Raymond Creusen Chris Claesen, Pejman Shoeibi Omrani, Aris Twerda, Brecht Wassing, Hans Veldkamp, Thibault Candela

