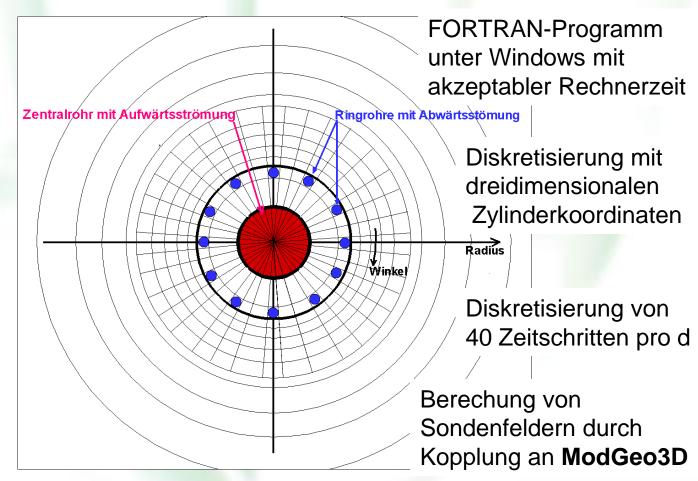

Überblick

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Beurteilung verschiedener Sondentypen für die mitteltiefe Erdwärmegewinnung

- 1. Doppel-U-Rohrsonde
- 2. Koaxialrohrsonde
- 3. Ringrohrsonde



Einleitung

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaft-lichkeit
- 7.Zusammenfassung

Planungs- und Monitoringsoftware mit ModTherm

Häfner, F., Wagner, R., & Meusel, L. (2015). Bau und Berechnung von Erdwärmeanlagen. Berlin/Heidelberg: Springer

Einleitung

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Technischer Stand der mitteltiefen Geothermie

- Sonden mit über 400 m Tiefe sind noch Einzelfälle mit spezieller technologischer Vorbereitung für die Beachtung umfangreicher Bedingungen. Aber der Bedarf steigt mit der Verdichtung der Besiedlung.
 - Bohrtechnische Voraussetzungen (Verwendung von Altbohrungen, Fehlbohrungen, Neubohrungen, Einbautechnologien, Gesteinseigenschaften, Verlustbereiche, Sicherheit)
 - Geothermische Eigenschaften (wie Regeneration, Verluste beim Transport, geologische Bedingungen, Wärmeentzug)
- Materialeignung für den Sondenbau (Kunststoff, Stahl)
- Genehmigungsfähigkeit und Qualitätssicherung
- Energetische Effizienz steht im Wettbewerb

Zielstellung

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Anwendbarkeit geschlossener Systeme für die mitteltiefe Geothermie

- Erdwärmesondenspeicher für größere Wärmemengen am Versorgerstandort
- Sicherstellung einer langzeitstabilen Versorgung verbrauchergerechte Dimensionierung
- Genehmigung und Wärmeentnahme -Nachbarschaftsprobleme
- Integritätsuntersuchungen lange Lebensdauer
- Standortbedingungen geologisch, bergbaulich und bautechnisch
- Materialien, Materialgrenzen für die Erdwärmesonden (Festigkeit von PE bei 20 K Temperaturerhöhung ca. - 25%)

Zielstellung

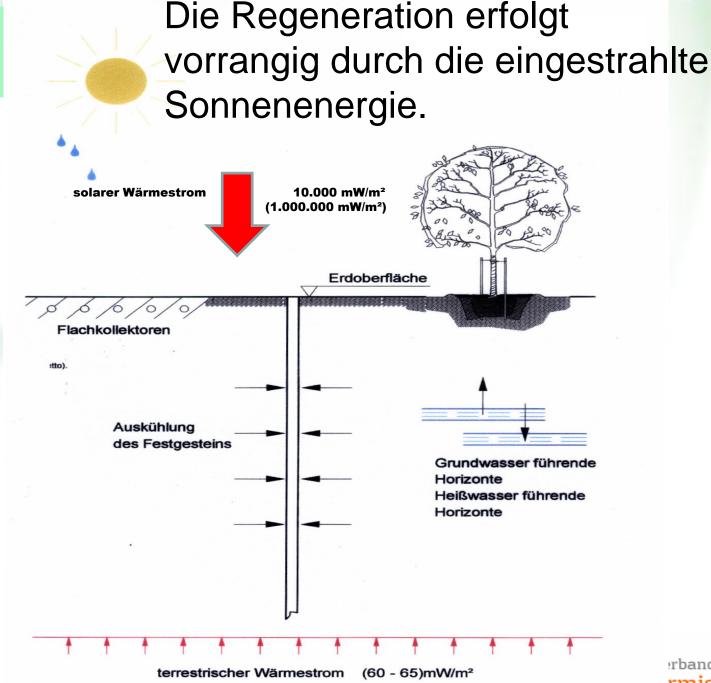
- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Teufengrenzen für die mitteltiefe Geothermie

- Bohrtechnische Faktoren
 - Bohrplatzbedarf im urbanen Gebiet
- Sondenkonstruktion
 - Beschränkung durch die Festigkeiten der Kunststoffrohre – Einbautechnologie bohrtechnischen Möglichkeiten -Außendruckfestigkeit der Rohre durch Suspensionsdichte und Pumpregime sicherstellen
 - Stahlrohre in Kombination sind erprobt in der Tiefbohrtechnik (Aachen, Kaiserslautern) und bei großen Teufen eingesetzt
 - Beschränkung durch den hydraulischen Widerstand

Bundesverband

Aufgabenstellung


- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Aufgabenstellung für mitteltiefe Sonden

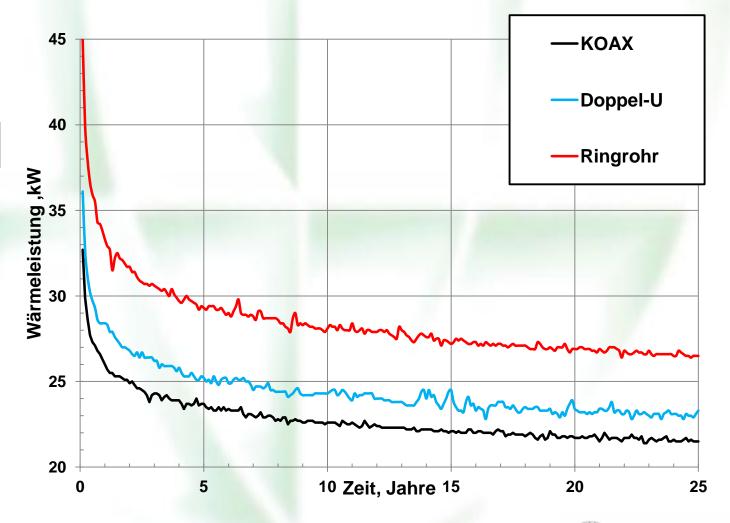
- Regenerationsfähigkeit im Dauerbetrieb –
 Dimensionierung und Auslegung
- Erschließung von CO2-schonenden Energiequellen
- Nutzung von tieferen Formationen mit h\u00f6heren
 Temperaturen Einsatz in Gebieten mit vorteilhaften geothermischen Verh\u00e4ltnissen
- Anwendung in sanktionierten Regionen für die oberflächennahe Geothermie – Einsatz technischer Rohrtouren
- Auswahl und Risiken bei Anwendung der verschiedenen Sondentypen

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5. Einfluss im **Erdreich**
- 6. Wirtschaftlichkeit
- 7.Zusammenfassung

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaft-lichkeit
- 7.Zusammenfassung

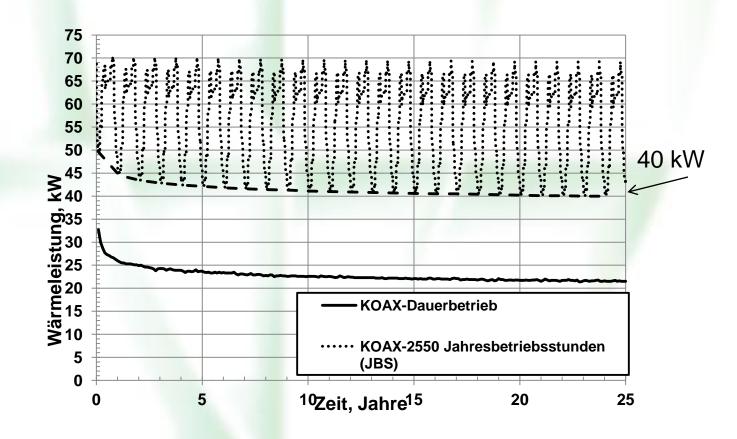
Leistungsvermögen verschiedener Sondentypen

Daten der Sonden

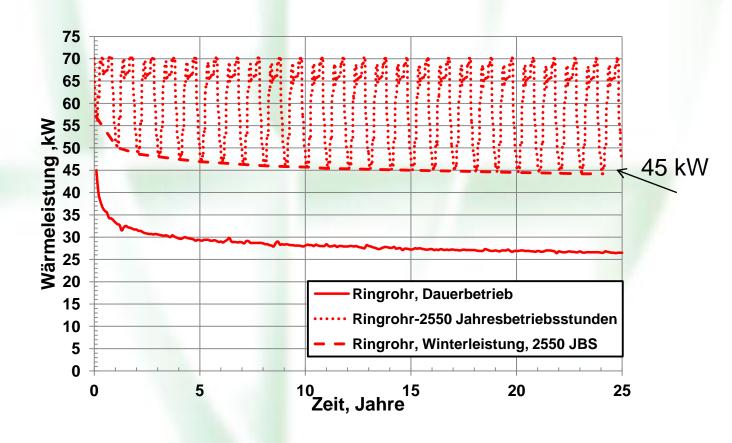

- Bohrlochdurchmesser 200mm,
- Sondentiefe 800 m ,
- Wärmeleitfähigkeit des Gesteins 2,3 W/(m K),
- Porosität 10%,
- Verfüllbaustoff Bohrlochzement 0,8 W/(m K),
- Jahresarbeitszahl 4.4 (U2), 4.7 (KOAX), 4.5(RR))

Тур	Komplet-	Injektionstemperatur	Wärmeleistung	Gesamt-
	tierung	Heizungsvorlauf	nach 25 a	wärme
		°C	Betrieb, kW	MWh
KOAX	Casing 5" Stahl	10/45	21.2	4.94
	PE 73 mm,			
	SDR 11			
Doppel-U	PE 42 mm,	10/45	23.3	5.23
(U2)	SDR 11			
Ringrohr (RF	R) Zentralrohr 73	10/45	26.5	6.12
	mm, SDR 11,			
	12 Ringrohre,			
	25 mm, SDR 11			

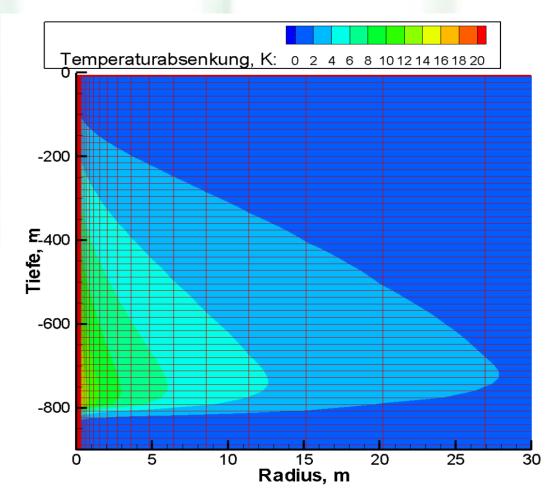
- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung


Leistungsvermögen verschiedener Sondentypen

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

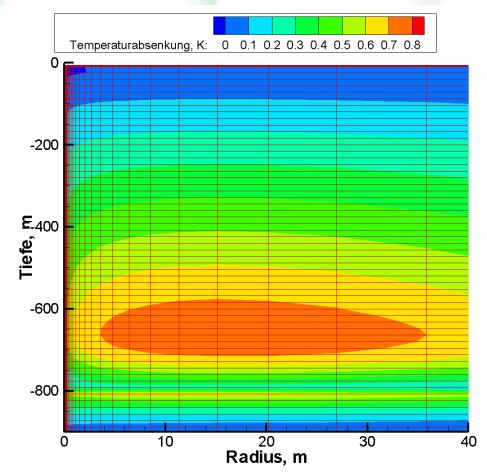

Leistungsvermögen bei 2550 Stunden heizungstypischer Jahresbetriebszeit Koaxialsonde

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung


Leistungsvermögen bei 2550 Stunden heizungstypischer Jahresbetriebszeit Ringrohrsonde

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

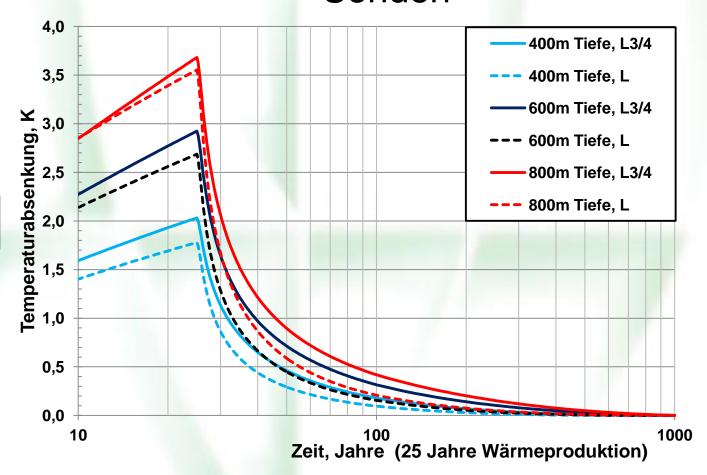
Temperaturabsenkung um eine 800 m tiefe Sonde nach 25 Betriebsjahren



Ein Großteil der Regeneration muss durch den natürlichen Erdwärmestrom erfolgen.

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Temperaturprofil der gleichen Sonde nach 50 Ruhejahren

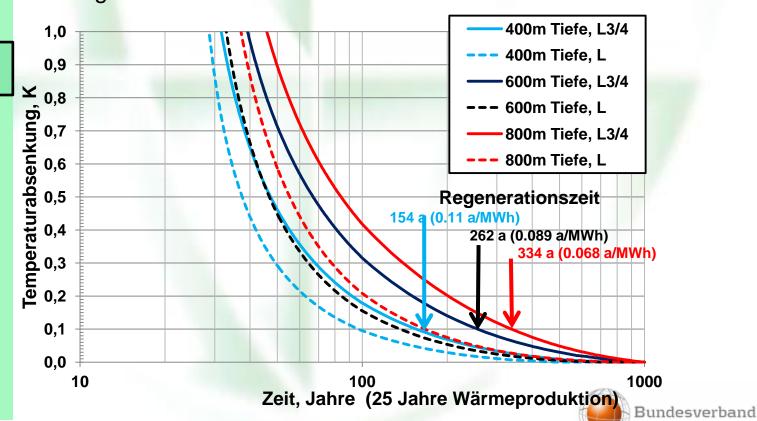


Die maximale Temperaturabsenkung tritt in ca. 600 m Tiefe (also in etwa ¾ der Gesamttiefe) auf.

Bundesverband

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Regenerationszeit unterschiedlich tiefer Sonden


Temperaturverlauf ein drei verschieden tiefen Sonden, 25 Jahre Betriebszeit Radiusabstand 10 m, jeweils am Sondenfuß (L) und in 75% der Gesamttiefe (L ¾).

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaft-lichkeit
- 7.Zusammenfassung

Temperaturabsenkung im Radiusabstand von 10 m für verschieden Tiefen

Definition der Regenerationszeit:

Zeit, in der sich das Temperaturfeld im Erdreich bis auf 0,1 K wieder an die geothermische Initialtemperatur angenähert.

Wirtschaftlichkeit

Potential erneuerbarer oberflächennaher Geothermie

1.Einleitu	ıng
------------	-----

2.Zielstellung

3. Aufgaben

4. Regeneration

5.Einfluss im Erdreich

6.Wirtschaftlichkeit

7.Zusammenfassung

	Erdwärme- sondentyp	Länge in m	JAZ (2014)	CO ₂ -Vermei- dungsfaktor in g/kWh	CO ₂ -Vermei- dung pro Haushalt und Jahr in t
	DpU- Rohrsonde	ca. 100	3,3	108	1,43
	Ringrohrsonde	ca. 100	4,3	141	1,86
	Ringrohrsonde	ca. 400	5,0	163	2,15
	Ringrohrsonde	ca. 600	6,5	212	2,80
	Luft-WP		2,9	91	1,20
	Solarthermie			260	3,43
	Tiefe Geothermie			326	4,30

 Dimensionierung der Erdwärmesonden (kosten- oder emissionsoptimiert ?? 0,660 t CO₂ pro Haushalt und Jahr zusätzliche Vermeidung gegenüber der Luft-WP)

Bundesverband

Geothermie

- Erschließung höherer Temperaturen in größerer Teufe
- Kosteneinsatz f
 ür CO₂-Vermeidung oder f
 ür Invest und Betrieb

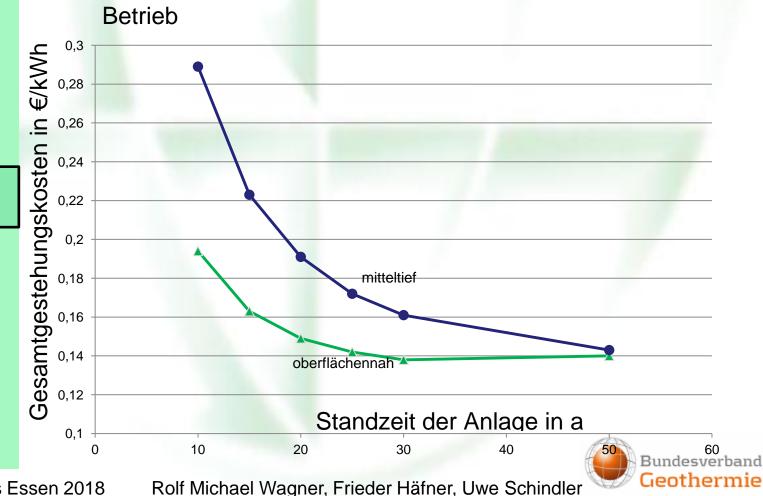
Geothermie Kongress Essen 2018 Rolf Michael Wagner, Frieder Häfner, Uwe Schindler

Aufgabenstellung

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Anwendung unterschiedlicher Sondentypen für die Speicherung

- Wärmeentzugsleistung
 - Typabhängige Variation bis zu 25% der Leistung
 - Ein- und Ausspeisezyklen (saisonal oder real im Kurzzeitbetrieb oder extrem Tag/Nacht)
 - Teufenabhängige Wärmemengenaufnahme
- Zielstellung für die Optimierung
 - CO₂-Reduzierung
 - Wärme- oder Kälteversorgung
 - Speicherladezeiten
 - Wärme- und Temperaturbilanz im Gebirge/Grundwasser



Wirtschaftlichkeit

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaft-lichkeit
- 7.Zusammenfassung

Kostenvergleich oberflächennahe mit mitteltiefer Geothermie

- höhere Herstellungskosten bei tiefen Sonden
- höhere Effizienz der tiefen Sonden im wirtschaftlichen

Zusammenfassung

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5.Einfluss im Erdreich
- 6.Wirtschaftlichkeit
- 7.Zusammenfassung

Zusammenfassende Wertung

- Mitteltiefe Sonden besitzen eine h\u00f6here energetische Effizienz
- Mitteltiefe Sonden können mit erprobter
 Bohrtechnik eingebaut werden
- Regenerationsdauer steigert sich mit zunehmende
 Teufe
- Sondenabstand hat bei mehreren mitteltiefen
 Sonden größeren Einfluss Abkühlungsradien
 sind bei ¾ der Gesamtlänge am größten
- Sondenmaterialien und Einbautechnologien besitzen noch Reserven

Zusammenfassung

- 1. Einleitung
- 2. Zielstellung
- 3. Aufgaben
- 4. Regeneration
- 5. Einfluss im Erdreich
- 6.Wirtschaft-lichkeit
- 7.Zusammenfassung

Danke für Ihre Aufmerksamkeit und helfen Sie mit, die Einsatzmöglichkeiten im mitteltiefen Bereich zu optimieren!

