

Scale and corrosion inhibition in the Netherlands and France

Hans van 't Spijker, Pierre Ungemach

Geofluid

- 1. Corrosion and scaling issues
- 2. Scaling and Corrosion in Paris Basin
- 4. Scaling and corrosion issues in the NL
- 5. Guidelines

Corrosion and scaling issues

- General (uniform) corrosion
- Pitting corrosion
- Crevice corrosion
- Underdeposit corrosion
- Galvanic c)orrosion
- Impingement
- Stress corrosion cracking (SCC)
- Erosion
- Corrosion by microbacteria

	Average Corrosion Rate		Maximum Pitting Rate	e (See Paragraph 2.5)
	mm/y ^(A)	mpy ^(B)	mm/y	mpy
Low	<0.025	<1.0	<0.13	<5.0
Moderate	0.025-0.12	1.0-4.9	0.13-0.20	5.0-7.9
High	0.13-0.25	5.0-10	0.21-0.38	8.0-15
Severe	>0.25	>10	>0.38	>15

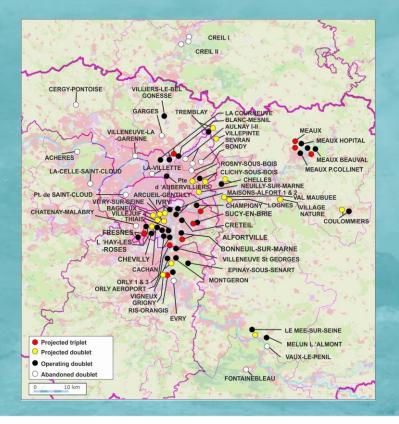
(A) mm/y = millimeters per year

(B) mpy = mils per year

Corrosion and scaling issues

Precipitation (deposition of solids)

Earth Ene	rgy (Geothermal Heat Pumps)
Component	Examples
Calcium carbonate	Various sites
Iron oxides	Various sites
Low ar	nd medium-enthalpy fluids
Component	Examples
Calcium carbonate	•Oradea and Ciumeghia (Romania), Balcova (Turkey), Saidene (Tunisia) N. Kessani and Nigrita (Greece),
Iron oxides	Nigrita (Greece)
Iron sulphide salts [in association with corrosion]	•Dogger Basin (France)
H	ligh- enthalpy fluids
Component	Examples
Calcium carbonate	•Kizildere (Turkey),Miravalles (Costarika), Latera (Italy), Cerro Prieto (Mexico), East Mesa, Nevada (USA), Krafla (Iceland)
Silica (and metal-silicates) [usually associated with small or medium TDS]	•Svartsengi and Nesjavellir (Iceland), Dixie Valley (USA), Matsukawa, Otake and Onuma (Japan), Berlin (El Salvador)
 Heavy metal sulphide salts (with silica and metal- silicates) [associated with high TDS] 	•Salton Sea (USA), Milos Island (Greece), Asal Wells (Djibouti)


Corrosion and scaling issues

	Salton Sea, California	Broadlands 1, N. Zealand	Hot Springs, Utah	Kilauea, Hawaii	Krafla, Iceland	Kizildere (W15), Turkey	Klamath Falls, Oregon	Dogger, Paris Basin, France	Nigrita, Greece	Pijnacke r, The Netherla nds
pH	5.7	8.3	-	7.1	7.2	8.0	8.4	6.2	6.8	5.9
Temp.,°C TDS (g/L)	214 182	270 3.8	260 7.4	190 15.8	220 1.0	138 2.4	80 0.7	73 15	59 2.5	80 101
Na K Ca Mg Fe Pb	42700 6500 18200 570 180 59	1060 150 5 0 0.2 -	2320 461 8 2 1 -	4930 756 358 0.3 0 0	193 20 1.5 0.03 0.02 0	1192 135 1.9 0.2 0 -	205 4.3 26 0.5 0.3	3700 60 630 150 0.5 -	529 89 160 105 1.1 -	38150 230 4900 860 39 <1
Cl SO ₄ ²⁻ HCO ₃ ⁻	112000 6 220	1700 40 300	3860 72 232	8970 24 18	26 194 328	46 631 -	51 330 35	7980 775 335		69850 13
As B SiO ₂	22 480 1150	5 7 600	4 - 563	0.1 4.3 750	- - 383	- 24 356	- - 48	- 5 14	0.5 4.6 38	30 12

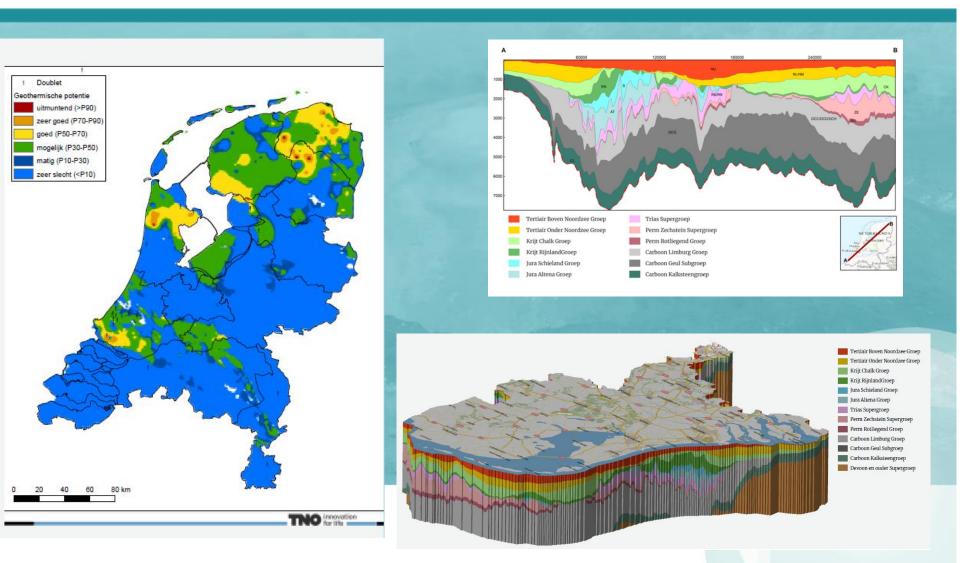
Scaling and corrosion in Paris basin

Urban heating since the 1980s

Scaling and corrosion in Paris basin

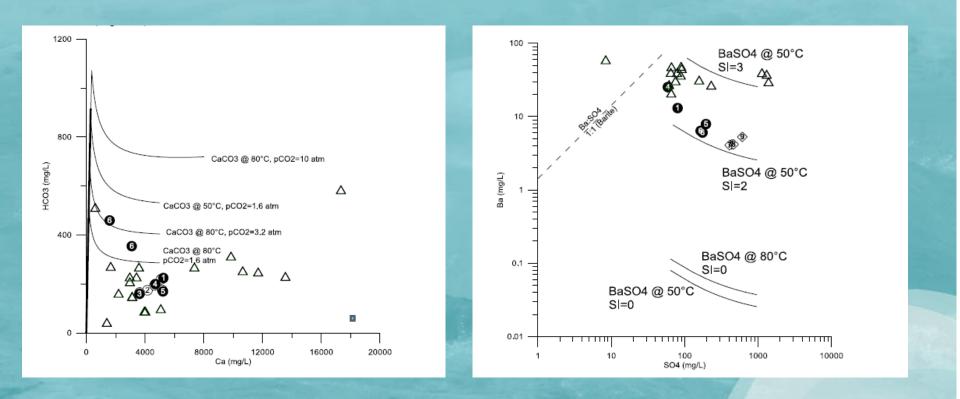
Conditions	Corrosion issues	Scaling issues	-
TDS ~ 15 g/l	Harsh (sour) conditions → Film forming amines injected	Mostly Pyrite (FeS ₂) formation due to enhanced [Fe] concentration by corrosion	
[Fe] =0.5 mg/l	Sulphide reducing bacteria \rightarrow biocide injection		
CO_2 and $H_2S \rightarrow Sour$			
T = 65-90 °C			
Bubble point ~3-10 bar			

Corrosion causes [Fe] increase, and thus results in pyrite scale formation

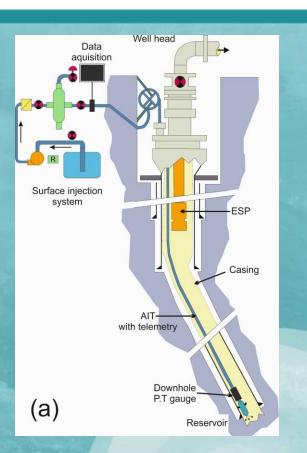

 \rightarrow Corrosion control is of utmost important

Scaling and corrosion in Paris basin

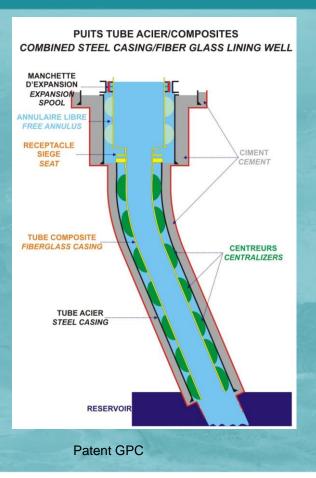
So far, geothermal energy is mostly developed by greenhouse owners



Conditions	Corrosion issues	Scaling issues
TDS ~110 g/l	Galvanic corrosion in early wells	Mostly calcite and siderite deposition
[Fe] =30 mg/l Traces Pb	Pitting corrosion?	\rightarrow increase pressure in surface installation
Gas composition is mainly CH4, N2, CO2	Erosion (cavitation) of couplings	
T = 80-100 °C	Pb deposition	
Traces of oil, aromatics		
Bubble point ~20-40 bar		



How to mitigate corrosion and scaling


Corrosion mitigation

- Use suitable corrosion inhibitors (filming amines)
 - Test efficiency of products
 - Monitor corrosion rate
- Inject inhibitor downhole
- Option: Use GRE liners
- Option: Use high steel grades

How to mitigate corrosion and scaling

Installation in Bonneuil

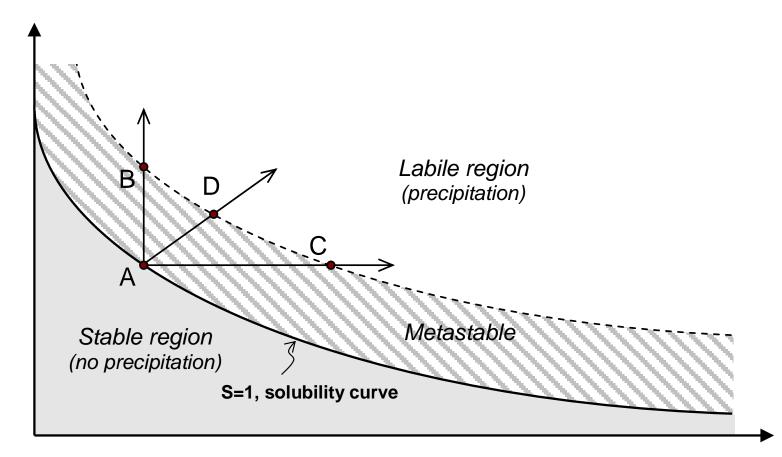
How to mitigate corrosion and scaling

Scaling mitigation

- Estimate scaling risks (e.g PHREEQC)
- Determine minimum injection temperature in injection well
- Prevent CO₂ degassing
- Inject inhibitor product
 - Carbonate scale deposition at depth
 - Most other scales (e.g. sulfate, silicate) at surface before HX

Monitoring

Corrosion Monitoring	Accuracy		
Well logging	+++		
Coupons analysis	++		
Iron content	++		
Corrator (LPR)	~		
Test kits	++		


Monitoring

Scale monitoring	Accuracy
Well logging	+++
Coupons analysis	++
Deposit analysis (XRF, XRD, SEM,)	++
Corrator (LPR)	~
Monitor ionic concentrations	++
Measure chemical parameters (pH,)	+
Monitor particle concentration	+

SCALING SOLUBILITY. SUPERSATURATION DIAGRAM

Temperature (or pH)

Concentration

```
Ca^{2+}+CO_3^{2-} \Leftrightarrow 2CaCO_3 (solid)
Langelier-Saturation-Index (LSI)
LSI = pH-pHs
```

```
pHs = (9.3 + A + B)-(C+D)
where :
```

A =
$$[log(TDS)-1]/10$$

B = -13,12 x log θ + 34,55
C = log[Ca 2+]-0,4
D = log [alkalinity)

TDS in mg/L θ, temperature in K Ca²⁺ as mg/L CaCO₃ alkalinity as mg/L CaCO₃