

GeoERA MUSE -

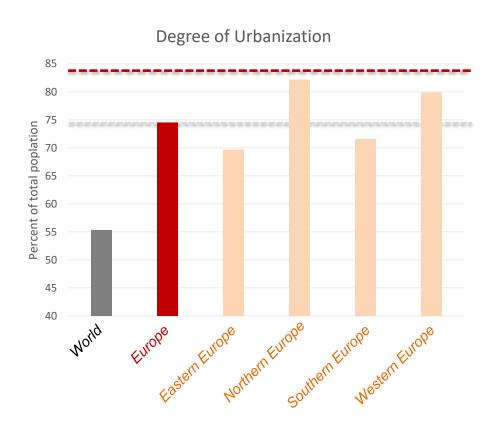
Managing Urban Shallow geothermal Energy

(from the perspective of Geological Survey Organizations)

Goetzl, G.

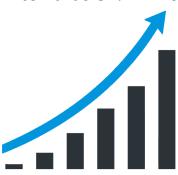
Geological survey of Austria

Online presentation DGK, 11.11.2020





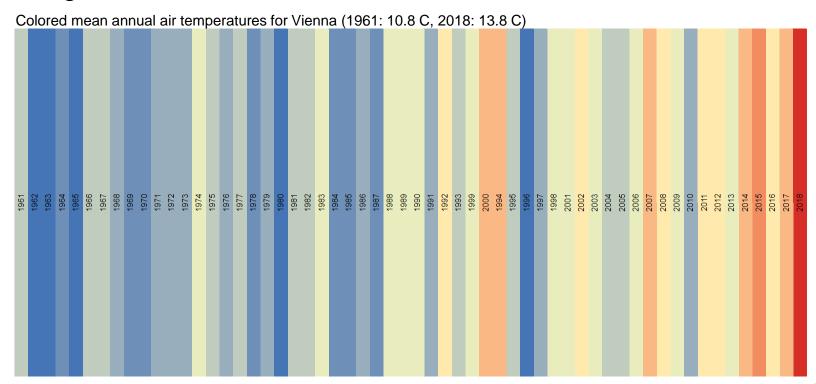
Why talking about managing shallow geothermal energy in urban areas?



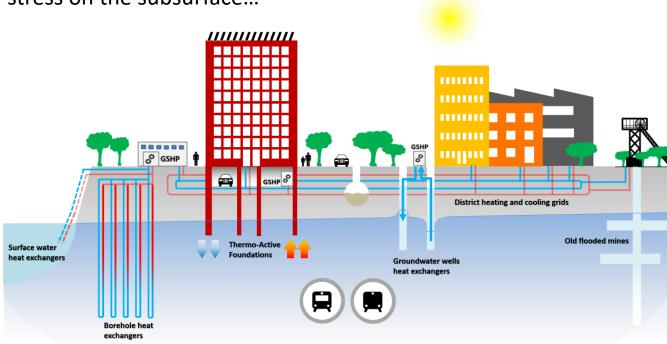
(1) Urbanization is continuously increasing in Europe...

... towards 84% in 2050

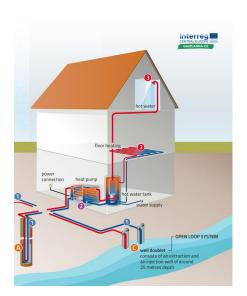
- (1) Urbanization is continuously increasing in Europe...
- (2) Demanding an urban transition concerning energy, climate, environment, social inclusion...


Figure 1: The European Green Deal

- (1) Urbanization is continuously increasing in Europe...
- (2) Demanding an urban transition concerning energy, climate, environment, social inclusion...
- (3) Increasing the stress on the subsurface...



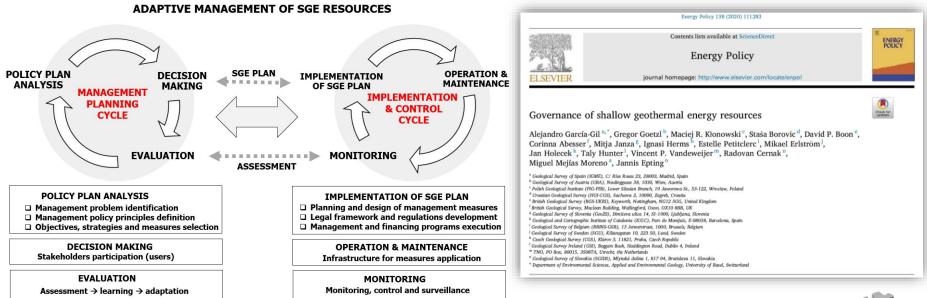
- (1) Urbanization is continuously increasing in Europe...
- (2) Demanding an urban transition concerning energy, climate, environment, social inclusion...
- (3) Increasing the stress on the subsurface...



Why talking about managing shallow geothermal energy in urban areas?

- (1) Urbanization is continuously increasing in Europe...
- (2) Demanding an urban transition concerning energy, climate, environment, social inclusion...
- (3) Increasing the stress on the subsurface...
- (4) Offering opportunities for shallow geothermal to leave a niche with new concepts...

From single family home use...


... towards DHC

- (1) Urbanization is continuously increasing in Europe...
- (2) Demanding an urban transition concerning energy, climate, environment, social inclusion...
- (3) Increasing the stress on the subsurface...
- (4) Offering opportunities for shallow geothermal to leave a niche with new concepts...
- (5) Requiring new management approaches for the subsurface...

8

Knowing the subsurface conditions is key for

management!

Sustainability & environmental protection

Resource assessment & management

Information & data portals

Governance

The role of GSOs in the urban transition process linked to shallow geothermal

Energy strategies, subsurface spatial planning

- Data assessment & geoscientific expertise
- Communication
- Consultation
- (Regulation)

The Geological Surveys of Europe

Managing Urban Shallow Geothermal Energy

16 Geological Survey Organisations (GSOs)

17 letter of interests of local stakeholders: Authorities, municipalities, universities, installers, drilling companies

Project lead: Geological Survey of Austria

MUSE project partners

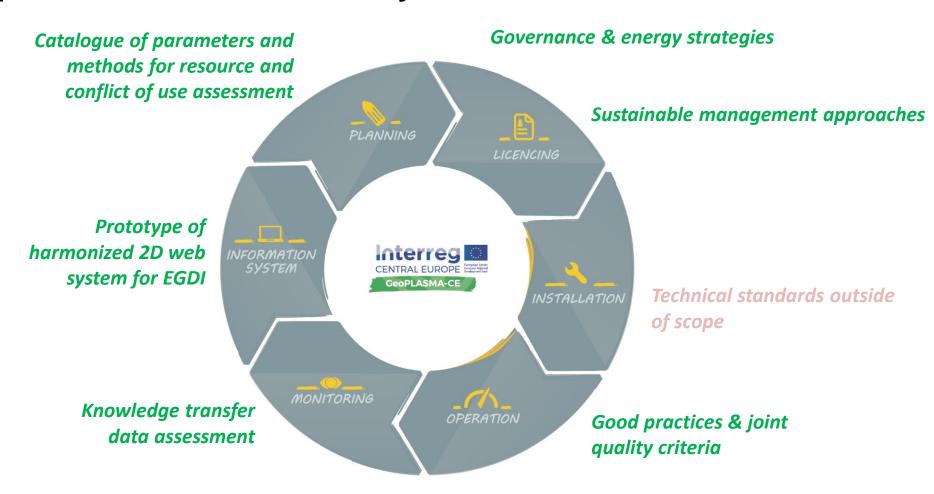
MUSE is one of 15 GeoERA (ERA-NET Co-Fund Action of 45 European GSOs) projects

Budget total: € 1,313,260

In-kind total: € 923,238

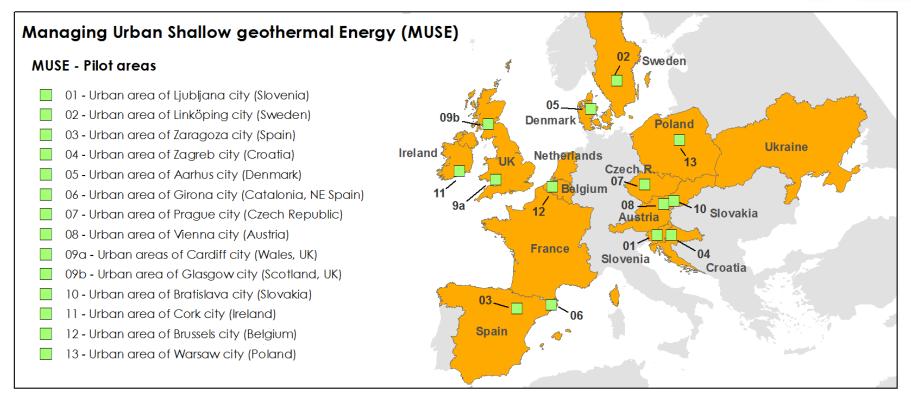
Project life time:

01.07.2017 - 30.09.2021



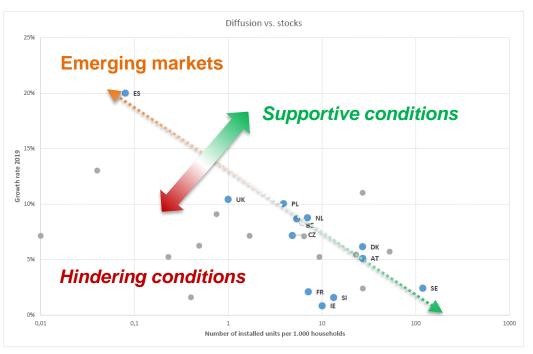
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166

Introducing urban shallow geothermal into the portfolio of EuroGeoSurveys


The cycled intergative management approach

Pilot area activities

14 geological/climatological diverse urban pilot areas in Europe


- Test and demonstration of elaborated methods to assess resources / possible limitations of use and targeted communication with stakeholders
- Providing proven concepts, strategies and tools for managing environmentally friendly heating and cooling in Europe

MUSE provides a good cross section through the MILEE **European GSHP market**

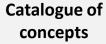
Country	Diffusion	Growth
	(units / 1000 househ.)	(sales 2019/stocks 2018)
Sweden	119,28	2,4%
Finland	52,72	5,7%
Austria	27,26	5,1%
Switzerland	27,25	2,4%
Estonia	27,18	11,0%
Denmark	27,13	6,2%
Norway	23,14	5,5%
Slovenia	13,35	1,6%
Ireland	10,06	0,8%
Germany	9,38	5,2%
France	7,16	2,1%
The Netherlands	7,01	8,8%
Lithuania	6,43	7,1%
Belgium	5,38	8,7%
Czech Republic	4,84	7,2%
Poland	3,9	10,0%
Hungary	1,69	7,1%
Bulgaria	1,47	
UK	1	10,4%
Macedonia	0,88	
Greece	0,75	9,1%
Cyprus	0,51	
Italy	0,49	6,3%
Serbia	0,4	1,6%
Portugal	0,23	5,2%
Ukraine	0,09	
Spain	0,08	20,0%
Romania	0,04	13,0%
Turkey	0,01	7,1%
Median (all)	4,84	6,3 %
Median (MUSE)	7,01	6,7%

Developed markets

Figures based on the EGEC market report (EGEC, 2020)

The MUSE approach

From different ideas to a set of solutions...



Subsurface characteristics

Bottom-up approach on existing concepts and requiremtens

Capitalizing results of previous and ongoing projects like GRETA, GeoPLASMA-CE, Brugeo...

- Technical glossary
- 47 joint characteristics
- BHE, GWHE
- Resources, conflicts of interest, field data

Field campaigns

Data modelling

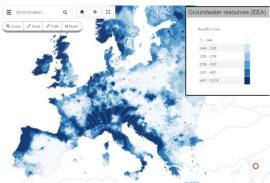
Data interpretation

Data representation

Work in progress

9 consecutive clusters (05/20 – 09/21)

Integration into EGDI


Functionalities (White Book)

Use of standardized protocols (INSPIRE, EGDI)

Use of IT standards (INSPIRE, EGDI)

Prototypes and role models for each selected parameter

Stakeholder communication

Target groups

- Local authorities and decision makers in the pilot areas
- Geological Surveys outside of MUSE
- International research teams and organizations, EU institutions
- (Lay public Public)

e and energy strategies

nitiate strategic cooperation

To enhance the impact and the

Assessment of the required and expect

of Geological Surveys in managing Shallow geothermal energy (SGE)

Stakeholder communication

Transfer knowledge

From scientists to stakeholders new to geosciences

Raise awareness

About technological options of SGE use in urban areas

Support an active dialogue

On the future strategic role of SGE to support climate and energy strategies

Initiate strategic cooperation

To enhance the impact and the sustainability of MUSE

Raise awareness

Objectives

On existing gaps / hurdles for an efficient and sustainable use of SGE in urban areas in Europe

Identify measures

How to better integrate SGE in regional strategies and action plans (e.g. RAP, SEAP)

Transfer knowledge

Between countries of well established-, emerging and juvenile markets for SGE

Assessment of

the required and expected role of Geological Surveys in managing shallow geothermal energy (SGE)

Conclusion

Achievements

- ➤ MUSE already <u>set an important starting point</u> to include shallow geothermal energy into the portfolio of EuroGeoSurveys → critical mass of 16 GSOs
- MUSE connected to the <u>European research scene</u> on shallow geothermal energy
- ➤ Stronger <u>awareness on urban subsurface management in the context of energy supply →</u> environmental protection and subsurface spatial planning achieved on an international and local level (inside the partners, inside EuroGeoSurveys and at local stakeholders)
- MUSE <u>stipulated follow-up research</u> on international (e.g. COST Action Geothermal-DHC) and national level

Lessons learned so far

- ➤ Low funding share → challenge for a comprehensive topic like shallow geothermal energy
- ➤ The implementation of MUSE is highly dynamic → it took 18 months for 16 organizations spread across Europe to align the different ideas and understanding of shallow geothermal
- The transfer of geoscientific ideas into EGDI (IT) infrastructure is a by far greater challenge than expected

What will be after MUSE?

17

09/2021 End of MUSE

EGDI web information system & KR prototype

Shallow Geothermal Energy Days 2021 event

2022 Start of CSA — **Geological Service for Europe**

Expand catalogue of concepts

Integrate data from previous international projects to EGDI

Connect novel management concepts to governance

Extpanded EGDI web information system & KR

2026 End of CSA

Thank you for your interest in MUSE!

Gregor Goetzl Geologische Bundesanstalt Neulinggasse 38, 1030 Vienna

gregor.goetzl@geologie.ac.at

Follow us

http://geoera.eu/projects/muse3/

#MuseGeoERA

@GeoERA #MuseGeoERA

